
Two Papers on Feed-Forward Networks

WRAY L. BUNTINE

erayOptolemy, arc. nasa. 8ov

BIACS & AI Research Branch, Mail Stop 244-17
NASA Ames Research Center

MoiTett Field, CA 94035, USA

ANDREAS S. WEIGEND

andreas_psych, stanford, edu

Jordan Hall (Building 420)

Stanford University, CA 94305-2130, USA

Unct Js

__A Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-91-22

July 5, 1991

REPORT DOCUMENTATION PAGE I OMB No. 0704-0188

Pubtic reporting burden for this collection of information _s estimated to average 1 hour per response, including the time for reviewing instructlo=ns, searching existing data source-_,

gather ncj and maintaining the data needed and compieting and reviewing the col)ection of information Send comments rec_arding this burden estimate or any other a.sp_c_=t of t,hrs

collection of information, including suggestions for reducing this Ouraen, to Washington Headquarters Services, Directorate tot reformat on Operat ons and Reports, 215 Jenersun

Daws Highway, Suite 1204, AHington, VA 22202-_302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2,, REPORT DATE 3. REPORT TYPE AND DATES COVERED
Dates attached

4. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

!9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

Attached

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Available for Public Distribution

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

Abstracts ATTACHED

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19.
OF REPORT OF THIS PAGE

NSN 7540-01-280-5500

15. NUMBER OF PAGES

16. PRICE CODE

SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Pre_Jcrtbecl by ANSI Std. Z39-1B

298-_02

Two Papers on Feed-Forward Networks

WRAY L. BUNTINg

wray_ptolemy, arc. nasa. gov

RIACS & AI Research Branch, Mail Stop 244-17

NASA Ames Research Center

Molfett Field,CA 94035, USA

ANDREAS S. WEIGEND

andreas@psych, stanford, edu

Jordan Hall (Building 420)

Stanford University, CA 94305-2130, USA

Abstract

Connectionistfeed-forwardnetworks, trainedwith back-propagation,can be used both for non-

linearregressionand for (discreteone-of-C)classification,depending on the form of training.This

report containstwo papers on feed-forwardnetworks. The papers can be read independently.

They are intended for the theoretically-awarepractitioneror algorithm-designer,however, they

alsocontain a review and comparison of severallearningtheoriesso provide a perspectivefor the

theoretician.The firstpaper works through Bayesian methods to complement back-propagationin

the trainingof feed-forwardnetworks. The second paper addressesa problem raisedby the first:

how to efficientlycalculatesecond derivativeson feed-forwardnetworks.

Contents

2

Bayesian Back-Propagatlon 2
i.I Introduction 2

1.2 On Bayesian methods 3

1.3 Multi-Layer networks 5
1.4 Probabilistic neural networks 6

1.4.1 Logistic networks 7
1.4.2 Cluster networks 8

1.4.3 Regression networks 10

1.5 Probabilistic Analysis 10
1.5.1 The network likelihood function 11

1.5.2 The sample likelihood 12

1.5.3 Prior probability of the weights 12

1.5.4 Posterior analysis 17

1.6 Analyzing weights 19
1.6.1 Cost functions 19

1.6.2 Weight evaluation 20

1.6.3 Minimum encoding methods 22

1.7 Applications to nelwork training 24
1.7.1 Weight variance and elimination 24

1.7.2 Prediction and generalization error 25

1.7.3 Adjustments for missing values 28
1.8 Conclusion 31

Calculating Second Derivatives on Feed-Forward Networks 33
2.1 Introduction 33

2.2 Notation 34

2.3 Exact calculations 34

2.4 Approximations 37

Chapter 1

Bayesian Back-Propagation

Connectionist feed-forward networks, trained with back-propagation, can be used both

for non-linear regression and for (discrete one-of-C) classification, depending on the

form of training. This paper works through approximate Bayesian methods to both

these problems. Methods are presented for various statistical components of back-

propagation: choosing the appropriate cost function and regulariser (interpreted as a

prior), eliminating extra weights, estimating the uncertainty of the remaining weights,

predicting for new patterns ("out.of-sample"), estimating the uncertainty in the choice

of this prediction ("error bars"), estimating the generalization error, comparing differ-

ent network structures, and adjustments for missing values in the training patterns.

These techniques refine and extend some popular heuristic techniques suggested in the

literature, and in most cases require at most a small additional factor in computation

during back-propagation, or computation once back-propagation has finished. The pa-

per begins with a comparative discussion of Bayesian and related frameworks for the

training problem.

1.1 Introduction

Back-propagation [RIIW86] is a popular scheme for training feed-forward connectionist net-

works. Recent improvements have looked at tasks such as speeding up learning using more

sophisticated gradient descent algorithms [BL88, EJMg0], eliminating insignificant weights

in order to find networks of an optima] size [LDS90, WHR90, WRH91], and various modi-

fications to apply a network to a one-of-C classification task (prediction of a single discrete

variable taking one of C mutually exclusive and exhaustive values) rather than a non-linear

regression task (prediction of a single real variable) [Bri89, DL91].

There is much to be gained by looking at the intersection between probabilistic tech-

niques and theory, and feed-forward connectionist networks. On the one hand, feed-forward

networks offer a broad computational framework for implementing a wide variety of prob-

abilistic functions, and on the other hand, probability theory offer techniques for refining

back-propagation schemes. We consider both these issues in this paper.

Since Bayesian probabilistic methods for learning tasks sometimes prove superior to

other approaches on smaller samples [Bung0, Bet85, Bun91, OHgl], we here frame the

Buntine and Weigend 3

probabilistic component of back-propagation in a Bayesian context. Back-propagation algo-

rithms are known to work well in a variety of noisy and uncertain domains using a variety

of different network structures and activation functions, so we propose Bayesian modifica-

tions and extensions to existing methods. Of course, in adopting a Bayesian justification for

the methods presented, we are not claiming any neurological validity for our methods. We

view feed-forward networks as a vehicle for massive parallelism in classification, regression

and learning. This occurs because feed-forward networks can be constructed from simple

component parts but still are able to represent a broad range of functions.

The beauty of the Bayesian approach arises from the fact that the entire method is

derived as an approximation to applying the single simple formula

posterior cx prior, likelihood

to the training problem, together with some principles for reasoning about the prior knowl-
edge available.

Section 1.2 gives some theoretical background and motivation for using Bayesian meth-
ods, and discusses some alternative approaches. Section 1.3 details the notation and form

of networks considered here. Section 1.4 outlines some network forms that correspond to

variations of standard probability functions. A good feed-forward network system should

therefore subsume the tasks of several special purpose statistical systems, albeit at some

computational cost. Section 1.5 presents a probabilistic analysis of the training of feed-

forward neural networks. Section 1.6 uses these results to present Bayesian embellishments

for the standard back-propagation algorithm: cost functions, and weight-evaluation mea-

sures. Several minimum encoding approaches [WF8?, BC91, Iris87] are also explained in

Section 1.6.3. Finally, Section 1.7 discusses some extensions to back-propagation involving

weight-elimination strategies, prediction of variables and generalization error, and handling
missing values.

1.2 On Bayesian methods

Bayesian methods described here are based on estimating posterior probabilities for differ-

ent network weights. The posterior corresponds to a relative measure of belief in the many

possible network weights, similar to the statistical mechanics idea of an ensemble of net-

works [LTS89]. Statistical mechanics theory has been developed in the context of training a

perceptron in a noise-free environment to estimate the generalization error [OH91, SST91].

While this is an impressive demonstration of the theory, we are concerned with developing

Bayesian methods for more general feed-forward networks trained in noisy and/or uncertain

environments, as commonly found in practice.

Bayesian and statistical mechanics methods both share the view that since we can never

determine the _correct z or _best" weights, we should carefully reason about the reasonable

possibilities. In Bayesian practice, however, such as [Mac91] more care is required in the
selection of the prior and the error model, etc. We present methods for that here. Bayesian

methods carefully separate the components of the learning problem: the priors on networks

and network weights which represent our expectations before any training and correspond to

regularisers; the utility or loss function for the problem which represent the goal of learning

and correspond to quantities such as minimum errors or least squares; and the likelihood

function for the network, such as a "Gaussian error model" as used in regression, which

gives a statistical model of the network and how the data is expected to have been generated

Bun_ine and Weigend 4

initially. Notice that in general there is no Ucorrect" prior, error model or likelihood, since

by definition these vary from problem to problem and it is a challenge to try and make a

choice that seems appropriate in a given circumstance. Notions such as the _true" subjective

probability function [Go188] or the _correct" likelihood function derived from the additive
energy function [LTS89] are therefore only partially consistent with our general approach,

though in several cases produce equivalent results. See also [Hangl] for a discussion in the

uniform convergence framework.

Bayesian methods should not be confused with recent results that back-propagation

methods are Bayes optimal [HPg0]. Bayes optimal refers to the property that back-propagation
methods should produce a network approaching the greatest lower bound on error (or more

generally, risk) as the training sample size approaches infinity. Bayesian methods described

here share this property but also have a more powerful property: They are approximating

a method that produces a classifier/regression that will on average have equal or lower er-

ror (risk) than a classifier/regression produced by anT/other method applied to the same

training sample. Notice, this holds for the current training sample, not just the infinite one
considered by Bayes optimality. Also, notice, that this powerful property rests on certain

assumptions, which are discussed below. This requires careful use of techniques in practice.

These properties hold because Bayesian methods are _ormative" or _rational" [Ber85,

HHL86]: any other approach not approximating them should not perform as well on aver-

age. As an example, minimum encoding methods such as MML [WF87] and MDL [Ris87]

are often viewed as approximate Bayesian methods. Accordingly, a more exact Bayesian

approach convincingly outperforms these encoding methods on the task of learning tree

classifiers [Bun90] made popular by Quiulan's ID3 algorithm [Qui86].

Uniform convergence methods [BH89, Hau91], the basis for computational learning the-

ory, approximate Bayesian methods when the sample size is large [Bun91]. Uniform conver-

gence methods require a sample size large enough so that the prior term found in Bayesian

methods becomes insignificant (and so can he ignored). Bayesian methods for connectionist
networks are therefore an important complement to these and can provide keener insight

about learning from smaller samples to the algorithm designer.
It is important to bear in mind, however, that Bayesian methods are not a replacement

for uniform convergence methods, as indeed, they are not a replacement for other techniques

such as cross-validation or minimum encoding methods, etc. All methods have particular

algorithmic, complexity, and statistical properties that make them more appropriate in

one engineering context or another. Cross-validation, for instance, can be fairly easy to

implement on top of an existing algorithm so the algorithm can be got up and running
quickly (even though its subsequent performance may be quite slow).

The theory behind Bayesian methods rests on two critical assumptions:

(I) the choice of models (or hypotheses) being searched must contain the _true" model (in

practice this means a fairly accurate approximation to the "true" model),

(II) and the choice of prior over these models should represent a reasonable initial preference

for models in the search space.

Although there is considerable literature on how to choose a prior to minimize the assump-

tions implicit in the prior [Ber85], and in practice we often consider a range of priors for their

suitability [Macgl, Bung0]. Bayesian methods then guarantee best average case performance

given these two assumptions and a third assumption:

(III) that the approximations made in implementation are sufficiently accurate.

B_me andWeigend 5

Poor modeling will lead to strong but inappropriate assumptions. "For example, a single

layer perceptron network cannot capture certain higher-order functions, so is inappropriate

for such tasks. So Bayesians say "A good Bayesian will usually out-perform a non-Bayesian

but a bad Bayesian can do far worse _ [Goo83]. In contrast, uniform convergence methods

make no assumptions (the model space does not have to contain the "true _ model and no

prior is needed) but can only guarantee good performance in the worst case, so they sacrifice

the guarantee of average case optimality. Notice that for larger samples, the worst case and

the average case converge bug for smaller samples the worst and average case can be far

different [Bun91].

Non-Bayesians often say that _Bayesian methods require the assumption of a prior on

networks which may not be known in practice". In fact, every algorithm or method is

making implicit assumptions about a prior that can be explicitly calculated by running

the algorithm on many different data sets and seeing the networks that result [Bun90]. In

other words, some kind of prior assumption is unavoidable in practice, except where sample

sizes are sufficiently large so that prior assumptions become submerged in the wealth of
information from the sample. So rather than ignoring the unavoidable, Bayesian methods

offer principles for developing a prior and evaluating a prior in a practical application. The

intent of Bayesian methods then is to make all assumptions underlying a method explicit

and then reconstructing the mcsg rational method based on those assumptions. Techniques

for making the Bayesian assumptions more robust also exist, and are referred to as robust

statistics [Ber85], however we do not consider them here.

1.3 Multi-Layer networks

The networks we consider consist of a directed acyclic graph, giving the network structure,

together with the activation functions at each unit or node, which relate inputs to activation

output. A directed acyclic graph is one containing no directed cycles, so the function

computed by the network is not computed using any fixed point equations. The network

deals with real numbers internally, although the inputs may be discrete, represented as, say,
reals 0 and 1.

Denote the input variables to the network as a vector of values z and denote the re-

sponse variable which the network is intended to predict as y. In the case of regression, the

network output corresponds to the predicted regression for y given the input variables. This

corresponds to the expected value or mean of the real valued variable y conditioned on the

values of the input variables z. In the case of one-of-C classification, the network outputs

a conditional probability distribution over C possible (mutually exclusive and exhaustive)

values for the discrete variable y, conditioned on the values of the input variables. The

output comes from n nodes and corresponds to a vector of real values summing to 1. The

/-th value is the estimated conditional probability that the output variable should have the
/-th discrete value.

Connections (given as directed arcs on a graph) correspond to the flow of information

between units or nodes. This can be in the forward direction during inference (classification

or regression) and in the backward direction when calculating derivatives. So a connection
from node n to m represents that node m receives node n's activation during the inference

stage, often multiplied with a weight win,,,. The nodes in the graph with no incoming
connections correspond to input nodes for the neural net. Their value is given to the system
from some external source.

Buntine and Weigend 6

Let the non-output nodes in the network be indexed 1, 2, In regression, the out-

put node has activation o and in one-of-C classification the output nodes have activation

oi,..., oc. The activation of any non-output node n is denoted un which is a real num-

ber. The activation function for the node m is a function of the activations un for nodes n

inputting to node rn, and the function is parameterized by a vector of parameters win.

The exact details of the activation functions relating inputs to a nodes activation is not

important for the analysis here, except that they are parameterized by network weights. A

typical activation function for a node n with vector of weights wn would be the sigmoid
acting on the weighted sum of its inputs ul,..., uz,

1
_(Igl, I_I) =

1% e-°_`=Iz=_.I_'+b"

The slope of the sigmoid, a, can be absorbed into weights and bias without loss of generality

and issetto one. The bias b,_forthe node isdenoted wn,0. Some other activationfunctions

that have been used are independent Gaussians found in radialbasisfunctions,logistic,

exponentialand varioustrigonometricfunctions[Cot90].

In the caseofone-of-C classification,theoutput activationsneed to be non-negativeand

sum to one. To do this,the output activationfunctionsmay normalize a set ofnon-negative

activationsfrom nodes in the previous layerul,...,uc, using the function

=c

We callthisfunction a normalizing activationfunction.A relatedactivationfunction isthe

Softmax function of Bridle[Bri89]given by

eu_

O'(_I'''''UC) = Z/=I ce"

1.4 Probabilistic neural networks

Two key issuesin network design are whether the network can sufficientlyapproximate

the "true" function that needs to be computed, and whether the network structureand

weights has an interpretationor intrinsicform that can be explained as the _knowledge"

in the network rather than treatingthe network as a black box. This second issueismore

important than one might think.Ifnetwork weightshave some clearinterpretationthen we

can configurethe network incoherent ways, an expert can view the knowledge represented

by the network, and we can more readilyassignmeaningfulpriorsorsome otherinitialization

for the network weights [TSN90]. Probabilisticinterpretationsof networks isalsodiscussed

in [Bri89].

In thissection,we present network structureswhere these issuesare well understood.

One of the advantages of the generalnetwork approach, however, isthat the one network

package can be used to implement allthesenetwork types and more, just be replacingthe

network activationfunctionsand theirderivatives.While we callthese probabilisticneural

networks, they should not be confused with the probabilisticnetworks that are used in

Buntine and Weigend 7

artificial intelligence [Pea88]. The neural networks are probabilistic in the sense that they

implement a well-understood probability function.

1.4.1 Logistic networks

Suppose all variables are discrete, the problem is classification, and the problem is distin-

guished by certain marginal probabilities of key features. For instance, for boolean variables

z0, zl,..., zs, the key features might be z0zs, zlz4, z3_, etc., and the distinguishing char-

acteristics of the problem are the marginal probabilities Pr(z0z3), Pr(zlz4), Pr(zsk'_), etc.

All other marginal probabilities are assumed to to follow somehow from these. A standard
method of inference is to find the distribution which assumes the least amount of information

apart from the importance of the given marginals. This is termed the maximum entropy

argument and the class of distributions so derived belong to the general exponential family

[MN89], of which the Ganssian and logistic functions are a special case.
Suppose the key features are represented by boolean functions cl,..., c! on the input

and output variables (z, y) that return 1 if the feature holds and 0 otherwise. Then the
exponential distribution takes the form

Pr(z,y)=exp(ao+,=,,...,!_ a,c,(z,y)) ,

where a0 is a normalizing constant and a are some parameters that determine Pr(ci(z, y)).
Since we are interested in the conditional probability distribution Pr(y [z), we take the

conditional version of this to get

Pr(y I z) = (1.1)

_'_l exP (___i=l,...,y OtiC,(Z, Y)) "

For y boolean this can be further simplified to

1
Pr(y I -

1 + exp (_,,=1y ct,(c,(z, O) - c,(z, 1))) '

which is the general case of multivariate logistic regression (or logit) [Ame85]. In the simplest

case with boolean variables, the distinguishing features are yzl, y_, _zi and _'_ for the

input variables zi. That is, the distribution is fully determined by the probabilities of

Pr(z_ I Y). The distribution reduces to the form

1
P (y I') =

1

thus recovering the sigmoid function. More complex cases introduce higher-order terms into

the sum such as zlzs, and z2_zs, etc. By introducing enough higher-order terms, any

conditional probability distribution on boolean variables can be represented. In practice,

higher-order terms would have to be carefully chosen to represent those kinds of features

expected in the data.

These functional forms can be implemented as networks in the following manner. For

a boolean output variable y, one hidden layer computes the higher order terms from the

Buntine and Weigend 8

input variables and the output node takes the weighted sum of these through a sigmoid

function. In the general case there would have to be a second hidden layer after the first

to compute the exponentials in Equation (1.1) and the final output layer has normalizing

activation functions. We refer to both these kinds of networks as logistic networks.

1.4.2 Cluster networks

Cluster networks perform one-of-C classification, so they output a probability vector for the
discrete output variable y. In the case of discrete inputs, cluster networks can be viewed as

an extension of logistic networks where the higher-order terms in the network axe discovered

by the network during training of the first layer of hidden nodes. The first layer of hidden

nodes detect hidden mutually exclusive and exhaustive classes in the data of the form usually

found using unsupervised learning or clustering techniques [Pan89]. For instance, if input

variables are all boolean then each node in the first layer can correspond to the partial

occurrence of a particular noisy conjunct. If input variables are continuous, then nodes in

the first layer can correspond to radial basis nodes. The detected classes are, however, fed

into the second hidden layer which then constructs an unnormalized probability vector for
y, to be normalized by the final output nodes.

Cluster networks implement a probability distribution based on the assumption that

there is a hidden variable making all other variables independent. We assume there is a
hidden variable z with K mutually exclusive and exhaustive values numbered 1 to K. All

other variables, the input variables zl,..., ZA and the output variable y are independent
given z, so the model for the joint probability of z, zl,..., zA, y is of the form

Pr(z, zl,...,zA,y) = Pr(z)Pr(y I z) 1-I Pr(z, I z)
i=l,...A

For K large enough and all variables discrete, this family of distributions can arbitrarily
approximate any other. The hidden variable z in practice has an unknown value and we are

interested in the conditional probability of y given z, so we manipulate this joint to produce

P"(y I• = j)p (z = j) I z = j)Pr(y l z) =
= J) Iz = j)

Notice that if the value for zl is missing, then the corresponding entry in the product

r[i=X,...A Can be dropped and the formula still holds. If a variable zi is continuous, we can

let Pr(z_ [z = j) be a Gaussian distribution with mean/J_,j and standard deviation _rij.
In practice, we might want to use a totally different distribution for zi. The current choice
is sufficient for presentation.

The following network implements this family of distributions. The network has two hid-

den layers with full interconnections between layers. The output nodes (numbered layer 3)

have normalizing activation functions, and represent the normalized conditional probability

vector for y given z. The second hidden layer has C nodes, one for each value of the output

variable y, and has linear activation functions. These activations represent an unnormal-

ized conditional probability vector for y given z. These give activation u_ for i = 1,..., C
corresponding to

u_ -- _ Pr(y l z = j)Pr(z = j) N Pr(zi Iz = j) .
jfl,...K i----1,...A

Bun_ine and Weigend 9

The first hidden layer has K nodes, each one corresponding to a hidden class, with ex-

ponential activation functions. These activations represent an unnorrnalised conditional

probabifity vector for z given z. These give activation uc+j for j = 1,..., K corresponding
to

+i =-P'(= J) I-[P'(_'I•= J).
i----l,...A

The bottom layer is the input layer. The network form is represented in Figure 1.1.

Figure l.h A cluster network

Activation functions are as follows:

oi -

= E wl,C+juC+j
j=l K

uc+j

for i = 1,...,C,

for i-- 1,...,C ,

= exp (wc+i,o 4- _ _ wj,,,hl.,=a
Gdi.crete h=l,...,d

iEeontintsouJ 20"/2,J 2

for j = 1, ...,K .

Notice the standard _v notation for weights has been dropped in the case of/_,j and _i,j.

The weights have the following interpretation:

w,,c+_ - Pr(_=ilz=j),

wj,,,u =_ IogPr(z, - h l z -- j) ,

wc+j,o -- log Pr(z = j) .

Buntine and Weigend 10

In addition, _i,j and _,j represent the mean and standard deviation of the Gaussian on z_.
Notice also that the following constraints hold:

x-_ wi,c+j--1 , _2..t e w._+c.°-I ' _L_ eW'_'"l' =1 ,
i---1,...C j=I,...K h--1,...d_

and toi,c+j are non-negative and wc+j,o are negative. These constraints can easily be

enforced by restricting the changes made to these network weights during back-propagation.
This can be done, for instance, using Lagraugian multipliers [LeC88], or simply by insuring

that one weight is determined by all the others according to the constraint.
As an example of these network, suppose variables y and zx, ..., z5 are boolean. Then the

conjunct ziA_'_Az5 is represented at the j-th node of the first layer by having Pr(zx I z - j),

Pr(zs [z = j) and Pr(_ I z = j) close to 1 and making Pr(z_ [z = j) and Pr(_ [z = j)

neither near 0 or 1, say about 0.5. The activation uj will then be near zero if an input pattern
fails to match the conjunct and closer to 0.25 if the conjunct is matched. Several such

conjuncts can be represented, and so expressions in disjunctive normal form (a disjunction

of conjunctive terms) are approximately represented.

1.4.3 Regression networks

A statistical model that has a simple network representation is linear regression [HT90],

where the mean of the response variable is usually given by

Y- E wife(z),
i=I,...,K

for "basis functions" f_ and "parameters" or weights wi. A corresponding network has K

hidden nodes without weights which compute the functions fi (z), leading into linear output
nodes that compute the linear regression. The regression is called linear because it is a

linear function of the weights wl, whereas the functions fi can be arbitrary.

The various techniques such as smoothing, regularization, crees validation, etc., applied

to these systems can then be cast in a network framework. MacKay presents a Bayesian

model for this [Mac91]. The choice of basis functions depends on the behavior of y antici-

pated. Some choices are products ofsinniz_ and cosniz_ for integer ni when zi E [-lr, lr]; or

combinations of Legendre polynomials or their integrals when z_ E [-1, 1] and y is expected

to be in the form of a polynomial; or combinations of Hermite functions when zi E [-c¢, c¢]

and _/is expected to be in the form of a product of exp(-_"_t=l z_/2) and some polynomial

in z. Notice each of these choices may require rescaling the z_'s initially.

Of course in the more general case, we can use a semi-linear model

:l =
i=l,...,K

which again has a straight forward network interpretation.

1.5 Probabilistic Analysis

This sectioncoverseach component of a Bayesian analysisin turn: interpretingnetworks

as a probabilityfunction in Section1.5.1;therebycalculatingthe likelihoodof the training

Buntine and Weigend 11

sample for a given network and weights, in Section 1.5.2; considering priors for the weights

in a network, in Section 1.5.3; and finally considering posteriors for the weights in a network,
in Section 1.5.4.

The notation EAI B (/(A, B)) denotes the expected (mean) wlue of the function/(A, B)
when A is distributed according to the probability function or probability density function

Pr(A] B). If A is continuous, this is calculated with an integral

EAIB (f(A, B)) - /](A, B) Pr(A [B) dA ,
JA

and if A is discrete this is calculated as

Ealn(f(A, 8)) = y(A,B)P,(A 18).
A

For mixed continuous and discrete variables, combinations of these formula apply. Similarly,

the notation valB (/(A, B)) denotes the variance of f(A, B), usually calculated as

VAIB(/(A,B)) -- EAIS ((.f(A,B)- EAIB(/(A,B))) _-) •

1.5.1 The network likelihood function

To do Bayesian or likelihood analysis on feed-forward networks, we have to use the network

output o(z, to), a function of the inputs z and the weights to, to construct a likelihood

function l(y [z, to) for the observed pattern (z, y). This likelihood function gives the condi-

tional probability distribution for the output variable y conditioned on the input variables z,
given a particular network and weights. This likelihood function is the basis of all subsequent
analysis.

In the case of classification, the likelihood function is a probability distribution repre-

senting the network's estimate of the "true" conditional distribution for y given z. The C

network outputs therefore give a conditional probability vector. The _-th output oi(z, to)
represents the conditional probability that the discrete output variable y takes its i-th value.
So

l(y I=, to)- o,(=,to).

In the case of regression, the likelihood function is a probability density function (it

integrates over the domain of y to 1) of the form l(y I z, to, F) for the output variable y
conditioned on z, the network weights and some other information F such as a standard

deviation of error. The network output is usually defined to be the mean of the likelihood

function given by

o(z, to) -]_ y l(y [z, to, F) dy.

The likelihood is usually defined in terms of some error model that is a function of y, the

mean o(z, to), and some other error parameters. An error model commonly used is the

Ganssian distribution with mean o(z, to) and standard deviation _r that is unknown (so has

to be estimated along with the weights to). This means the true y is expected to vary about

the mean o(z, to) with standard deviation _r. It is more realistic that the standard deviation

itself should be a function of z too. In this case, a second output node can be connected

to the network to estimate the standard deviation; we denote its output by o_(z, r), and

Buntine and Weigend 12

note that the weights r will have parameters in common with w. Vapnlk [Vap82] has also

suggested using the Laplace distribution as an error model when the experimental conditions

may vary with maximal uncertainty but the standard deviation is still independent of z.

This leads to the following choice of error models: with known/unknown standard deviation
_of

1 ((y - o(z, w)):_'_zo(I=,w, _= V o" exp / ;

with z dependent standard deviationd(z, r) of

1 ((y--o(z,w))')IGD(y l =, w, r) -- V_ol(z,r) exp 2o,(=,r) = ;

and with experiment dependent standard deviationof

,IL(yIz, w,A) = _-_exp

1.5.2 The sample likelihood

Given a training sample, we need to look at the likelihood of the sample as a function of the

network parameters w. This assumes the weights w and any other parameters are known

and gives the likelihood that the sample seen would occur. Bayesian learning equations are
presented in the next section that show how this leads to learning of the weights.

For a sample consisting of N examples given as a list of input vectors z -- zx,...,zN
and corresponding output values y - Yx,..., YN, the sample likelihood in the classification

problem (assuming examples are independently and identically distributed) is given by

[,(y l ., = II o,,(=,, .
i=l,...,N

The sample likelihood in the regression problem with Gaussian error and standard deviation

(r is given by

1 ((yi-o(zl, w))2'_ 1 (NsZ_
L(Y IZ'W'O') = H V/'_0 .exp \ /20"Z "-(2.X.)'_o.N exP _, O'2J '

i=l,...,N

where
1

i=l,...,N

is the observed average squared error. The sample likelihood for the Laplacian error model
is similar.

Maximum likelihood methods for network training use the negative logarithm of the

likelihood as a "cost" function (to be minimumized) [BW87, E3Mg0].

1.5.3 Prior probability of the weights

In the classification case, prior probabilities over the network weights w give our a pr/or/

belief that oi(z', w) for i = 1,..., C is the _true" distribution for y given z. In the regression

case, prior probabilities over the network weights w give our a prior/belief that o(z', w) is

Bunt/he and Weigend 13

the "true" mean of y given z. The choice of prior represents an assumption about what

form _0 should take. By representing the prior as a probability distribution Pr(w), this

prior assumption is not expressed as hard constraints such as wn,,, = 1 or 0 < w,_,m < 0.5,

but rather as preferences among the many different possible values.

There is considerable literature written about priors (see [Ber85] and references therein),

and a number of methods exist for obtaining priors that are considered "non-informative _

about the class of theories being considered. We suggest a few priors here, however believe

more experience and research is needed for designing priors on neural networks. In general

there is no "correct" prior, however, it is important to use a prior that has reasonable

properties. See [Bung0] where a number of different priors are discussed for trees and

[Mac91], where several priors are tried and compared for a single network learning problem•

When dealing with probabilistic neural networks, as given in Section 1.4, we can often

use the probabilistic interpretation of the network to guide us in the choice of prior. Some

examples are given below.

Priors on cluster networks

For instance, the cluster networks of Section 1.4.2 have weights corresponding to Gaussian

parameters or proportions. The parameters wi,c+j for i = 1, ...,C are parameters for a

multinomial distribution, so _"_i=1 c wi,c+j = 1. A standard non-informative prior for
this is [Ber85, Bung0]

Pr(wl,c+#,.,wc,c+#) = II . i/c-i•. w_,C+ j ,

i=l,...,C

where we have ignored the normalizing constant so the prior is "_ rather than "-_.

Similarly, suitable priors for the other parameters can be found by using standard non-

informative priors for the class of parameters concerned. Notice transformed parameters

e_C+#, o are multinomials, so we use the same form of multinomial prior as before for these.

However we need a prior on weights zoc+l,j, not their exponential. This requires a change

of variables, and note that wc+K,0 is a function of WC+I,0,...,z0C+K-1,0. Likewise for
eWC÷J,L _, .

Pr(wc+l,o,..., wc+K-1,o)

Pr(wc+jj, 1,..., wc+jj ,j_- 1)

o(exp(1/Kj=l _KwC+J'°--wC+K'°)'

°(exp /1/di _=l,...,d,_ WC+j,i,h--WC+j,i,d,)

1
Pr(pi,#,o'i,#)oc --

¢ri,j

Priors on regression networks

For regression networks, priors say how we expect the mean of y given z to change with

z. A standard approach is to say we expect y to vary smoothly as the input variables

zl,..., ZA change. For instance, for linear regression networks, one can say the average
second derivative of y w.r.t, z should not be too large. This section argues that a suitable

Buntine And Weigend 14

prior on the weights takes the form

Pr(w) oc C(w) -KI2

for a quadratic function C(w) on the weights w determined by the basis functions used

in the regression. This is equivalent to but simplifies the approach given in [Mac91] for

corresponding priors.

With z defined over the multi-dimensional space X, the average magnitude of the second

derivative can be expressed as a function C(w) given by

where the norm II- II _"an average measure of the size of the second derivative at a single

point. We assume the space X is finite but relax this condition later on. One way to

calculate the norm [[. [] at the point z is to calculate the average change in y about a ball

in z-space of fixed radius from z (i.e. z + Az where I_=I - 1) due to the second derivative.

Using a second order expansion, this is given as:

i d2Y A 2o=, ,,,.
i,j=l OzlOzj / jIA=I=I

-- kdz_) for A=I, and for large A

1 (_ 02110211 A (02y _21_ Oz--'??Oz"--_.+2 E tOm,Oz.# /]i,j=l i,j=1

We use the approximation below since it is proportional to the exact calculation when A = i.

Substituting into C(w) and using the regression model y = _"_i=x K wife(z), we then get

K

C(w) = E WmWnCm'n '
I_l,n----1

where

I A / 02f,,,(z) 02f,,(=) O_f,,,(z) O_f,,(z) \

k +

We can then put a prior on w in the general form

where _ is a prior "hyper-parameter" to be determined. A large value of a means we have

a strong bias towards smooth functions, and a sinai] value means otherwise. We leave a to
be an undetermined parameter because we cannot be sure a pr/or how a particular value of

a will effect smoothness. MacKay shows how to determine a a posterior, however we show

below how to marginalize it out.

Buntine and Weigend 15

This gives a prior in the form of a multivariate Gaussian

Pr(w i a) =
a KI2 det x/2 C

exP (-2C(w))

where K = [w[is the dimensionality of the weight set w. Since we are not really sure what

a E [0, oo) should be anyway, we can marginalize it out. Since a appears as a factor of

C(w), it is a sealing quantity so a suitable prior is [Ber85]

This gives

Pr(_) _ l/a

Pr(w) = Pr(w Ie_)Pr(a)da

r(K/2) det 1/2 Ccx oc C(w)-KI2
_K/2C(w)K/2

During gradient descent, the important contribution is

O-logPr(w) = K'2Ol°gC(w)l - K OC(w)
Owl Owi 2C(w) Ow_

If we compare this with the derivative of the original Pr(w]a), then it follows that

K

_ '_ _-----_.,

where _ is the weights actually used. Since C(w) is the measure of smoothness (where

smaller is smoother), this says that one should change weights to increase smoothness of the
OC w

function y. Notice from the definition of C(w) that the partial derivativesmean are

calculated when calculating C(w). Likewise for second derivatives. We therefore get that

all first and second derivatives of -logPr(w) w.r.t, w are calculated with the same cost it

takes to calculate C(w).

Values of Cm,n for a given set of basis functions only have to calculated once, but

usually lead to a complex matrix. In this case, a diagonal approximation to the matrix may
be sufficient. For instance, when using basis functions in the form

= ITsin,,,,,TIco,,,,,,
iEC,, il_ I.

for different ni and index sets In, then the diagonal term is given by

Entropy priors

ZeUner's maxima] data information prior for a probability function Pr(z [0) on parameters

0 [Zel90] takes the form

Pr(O) _ exp (-z, lo(o)) ,

Buntine and Weigend 16

where

/ p_(zlO) log P_(_10)dzz, lo(o)
J

is the usual entropy function giving the entropy for z distributed as Pr(zlO), which is a
function of 0.

When doing classification, we are constructing a network for the conditional distribution

Pr(y I z, w). Assuming a distribution for z is known, a prior using the above method can
then be formed as follows.

p,cto) expC-(z.+E.(X,j...Cto))))
0c exp (-E= (Iyl=,, (to))) ,

(15 ,)_ _P - I",,'(to
d=l

This assumes the entropy of z, I= is independent of to. Since the distribution for z is not

actually known, the last line estimates the expectation Ez (') with the empirical average

from the sample of input vectors z = zl,...,ZN. Since we are forming a prior on weights

(parameters) for a conditional distribution of y given z, which presumably is independent

of the distribution for z, we can use the sample of points for z to estimate a distribution

for z. For the classification case,

C

1,1..,.(to) = - to)log to)
i=1

For the regression case with z dependent standard deviation of d(z, r),

lyl=,,-,,(to, r) = log o'(z4, r) + constant

Weight elimination and priors

One particular prior we have worked with assume the weights have a prior probability that

corresponds to

,,2 /to2
I,m/ 0

- logPr(to) = AC(to) + constant = A _ 1 + 2 2 + constant (1.2)
i,m toi,m/toO

The unspecifiedconstant term isrequired to ensure Pr(to) normalizes to 1, but itsvalue

isunimportant since we primarilydeal with derivatives.This term was firstproposed by

Rumelhart in 1987. tooisthe scalefor the weights: For Itoz,ml>_ too,the cost ofa weight

approaches unity (timesA),allowingthe interpretationof the complexity term as a counter

of significantlysizedweights. For Itoa,m[<< too,the costiscloseto zero.

Relevant weights are drawn from a uniform distribution(to allow for normalization of

the probability,up toa certainmaximum size).Weights thatare merely the resultof "noise"

are drawn from a Gaussian-likedistributioncenteredon zero;they are expected tobe small.

The corresponding bump around zero can be approximated by a Gaussian with variance

r2 = w0/A. The largerA is,the closerto zero a weight must be to have a reasonable

probabilityofbeing a member of the "noise"distribution.

Buntine and Weigend 17

The learning rule is then to change the weights according to the gradient of the entire

cost function, continuously doing justice to the trade-off between error and complexity. This

differs from methods that consider a set of fixed models, estimate the parameters for each

of them, and then compare between the models by considering the number of parameters.

Taking a complexity term into account during learning required A to be adjusted dynamically

during learning. The details of this procedure are described in [WKtt91].

Bayesian interpretation of weight elimination

To place this approach in a Bayesian framework, consider the case where we place a prior

on A, Pr(A) to determine the overall prior on w. We do this as follows. We say

Pr(w [_) 0(e-_c(') ,

where C(w) is the sum given in Equation (1.2) and notice that this distribution is improper

because it cannot be normalized (C(w) is bounded above in magnitude by the number of
weights Iw[). If we restrict the weights _0 to remain inside a sufficiently large finite region

W in ,`'-space of area [W[, then we get

1 e__(c(.)_l.l)
Pr(w I_) =]-_

P,-(w) _ _ p(_)e-_(c(')-I'Dd_ ,

0 - log Pr(w) OC(w)

Own,m = P._I- Ow.,,_

O' - log P,'(w) O'C(w) OC(w) OC(,,,)

Ow.,,.Owzj, = P_,I. Ow.,,,.Owz,i, + a']l" Ow.,,. Owl,_.

where _1_ is the expected value of A given weights w and _r_l= is its variance. Notice these
derivatives are essentially the same as the derivatives of the original form in Equation (1.2)

except that A is now set automatically. The terms are given by

f,_ Ap(A) e-'_(c(w)-Iwt)dA

P_l- = f_p(A) e-_(c(w)-Iwl)dA

and O'_lw is defined similarly. Reasonable values appear to be of the form

1
P_lw -

C(w)
O',_[w -- /_AIm,

which means A is expected to vary inversely with the number of small weights.

1.5.4 Posterior analysis

To do Bayesian analysis, we need to be able to determine relevant posteriors from priors and

likelihoods. For the regression case with Gaussian error and unknown standard deviation cr

this is as follows. The product rule for probabilities gives the following:

L(y I z, w, cr)Pr(w, _)Pr(z I w, u) = Pr(w, u I ffi, y)Pr(y l z)Pr(_)

Buntine and Weigend 18

where L is the sample likelihood as before, Pr(w, or I z, y) equals the posterior probability

of the network weights w and the parameter to the error model or. Pr(_e [w, or) is the
probability of seeing the inputs z given w and or. This can be assumed independent of w

and or since they just parameterise the model for 11given _e, so Pr(. I w, or) = Pr(.) which

is the prior probability of seeing the set of inputs z. Pr(z) then cancels out both sides.

Wldle Pr(y I z) also has a particular meaning, for our purposes it is a normalising constant

because it is independent of w and or. Re-expressing this, and assuming that w and _ axe a

pr/ori independent, we get a standard Bayesian learning equation (see, for instance [Bun90])

L(11 I z, w, or)Pr(w)Pr(or)

Pr(w,_r [ffi,y) = fw,_L(111_,w, or)Pr(w)Pr(_)dwd_ "

When using the network, the weights w axe the primary concern and or is of secondary inter-

eat, so we would also like to know Pr(w I z, 11), which can be calculated from f_ Pr(w, _ [
z, 11)d_r. If we assume the standard non-informative prior for the standard error _r, Pr(cr) =

1/_ [Ber85], the integration for or given to can be done in closed form using the I" integral

[Ber85] (with a change of variables T = 1/or'). This yields

L(11 I _, to)Pr(w)
Pr(w I z,11) =

f. I,(11] _, to)Pr(w)dto '

where

L(111 ,to)= 1
(,v_)-_ vT s_-I "

Furthermore, the expected value of _' given to and z, 1/can be calculated using the same
integral, giving a standard result in statistics:

Ec'I"x'Y (or') 1 s'. (1.3)

A similar calculation can be done for the Laplacian error model with unknown standard
deviation II, and this time

)1 ly, - o(z,, to)l
F"AI'_'x'Y (L12) = N(N- 1) i= ._"

To summarize, posterior probabilities for a set of network weights to are as follows.

Lemma 1.5.1 In the classification and regression frameworks described abo_e for neural

nettoorlu, assume the input z is a priori independent of the network weights w and other

parameters such as cr and A, that is Pr(.]to, or) = Pr(z). Posterior probabilities of network
weights are as follotos. For regression with Gaussian error and unimoum or,

Pr(w]=,11) c< Pr(to,111z) = Pr(to) r(n-_)
N--I '

for regression with Laplaeian error and unlmown A,

Pr(to I',11) _ Pr(to, 111.) = Pr(to) r(m

,,,,,,,,,- '

Buntine and Weigend 19

and for cl_sifieation

Pr(wlffi,y) Pr(w, v lffi) = P (w) H o,,(x,,w).
i----I,...,N

These posterior probabilities define the Bayesian solution to the problem of training net-

works. With a Gaussian error model, high posterior weights w trade-off the prior Pr(w)
and the mean-square error. With a Laplseian error model, the trade-off is with the average

absolute deviation. In all cases, as the sample size N gets large, the prior term will become
negilible and can be assumed constant.

1.6 Analyzing weights

The section describes how we can use the posterior analysis just given to assist basic tasks

done during network training. In Section 1.6.1 we describes how we derive "cost functions"

for a given set of weights from the posterior formulae and Section 1.6.2 describes how we

can evaluate a set of weights. The cost function allows us to find a locally optimum set

of weights and the evaluation allows us to compare the quality of one local optimum with
another.

1.6.1 Cost functions

The posterior probabilities just given represent functions that should be maximized. Cal-

culation is usually done in logarithms to prevent arithmetic underltow and to turn products

into sums. Hence when searching for a high posterior set of weights we would like to mini-

mize the "cost function" -log Pr(w [_, y). Notice that

- log Pr(w I z, y) : -- log Pr(w, y I z) + log Vr(y [_),

and since the term logPr(y [e) is constant in w and difficult to calculate in general, we
can instead minimize the cost function

Cost(w) - - log Pr(w, y] z),

which can be directly computed using Lemma 1.5.1.

These cost functions differ from maximum likelihood methods for network training

[BW87, EJMg0] in that they introduce a prior term and sometimes have "nuisance" pa-
rameters eliminated. For instance, _ is termed a "nuisance" parameter when trying to

determine a good set of weights and have no concern for the typical error. The prior term

corresponds to the regularizing term found in smoothing methods [HT90] and used to good

success in techniques such as weight-elimination [WRHgl]. A similar Bayesian formulation

is given in [Mac91].

Using the prior discussed in the previous section, with maximum a posterior analysis we

would minimize in the regression case with Gaussian error and unknown _r

- log Pr(w, y I z)

N-1
-- _ log _ (yi - o(x,, w)) 2 - log Pr(w) + constant,

i--I,...,N

(1.4)

Buntine and Weigend 20

where the logarithm of the prior is determined as before. If the value of _r is known the cost
to be minimized is

1
_ (y, - o(zi, w)) 2 - log Pr(w) + constant.

i=I,...,N

Notice the difference between these above two cost functions. In the second case, the cost

function is proportional to the mean squared error plus a "regularising" term, but in the

first case the logarithm of the mean squared error is taken. If the value of _r is determined

from the inputs as well, as d(zi,r), the cost to be minimized is now -logPr(w,r,y [ffi)

given by

2ol(z_,r)2(y_1 - o(z,, w)) 2 + _ log o'(z,, r) - log Pr(r,w) + constant
i----I,...,N i=I,...,.N _

Minimization has to be done for r and w concurrently. A prior for r was given at the end
of Section 1.5.3.

In the classification case, the overall cost is given by

-logPr(w, ylz) =- _ logou,(z,,w)-logPr(w)+constant. (1.5)
i=l,...,N

If the output variable is boolean and represented as 1 for true and 0 otherwise, then the

first sum expands to

- _ (y,logol(z,,w) + (1-y,)Iog(1-o1(z,,w)))

i=l,...,N

Notice this is the familiar cross entropy error for the sample.
While this gives the cost function to minimize, we do not consider here the computational

problem of how the minimization should be done. Various gradient descent, conjugate

gradient or approximate second-order methods [BL88, EJM90] can be tried to solve the

minimization problem. See, for instance, [PFTV88, Chap. 14] for a tutorial discussion of

methods for solving the minimization problems for linear and non-linear regression with
Gaussian and other more robust error models.

Notice the formulation given here assumes learning is done in batch (or epoch) mode

because the posterior needs to be calculated on the full sample. When initializing search,

it may help to use smaller batches to get somewhere near a local minimum, and perhaps

do batch learning on the full sample when refining an already reasonable solution. This

corresponds to the stochastic gradient descent strategy that is common in back-propagation

implementations. We do not consider which strategy is better here.

1.6.2 Weight evaluation

To obtain a measure of the quality of each local maximum a posterior estimate _ found

during search, an estimate of the local area under the posterior around @ is usually done.

The actual posterior value itself is not the best measure of quality because some peaks

may be thinner than others so they contain much less of the posterior probability in their

vicinity. For instance, consider an idealized learning problem where the scalar parameter a

is being learnt. Suppose a has posterior given in Figure 1.2. Notice the left peak is higher

Buntine and Weigend 21

Figure 1.2: Posterior for a

but much thinner. The expected value of a, E. (a), and other functions of a would therefore

come more from the fatter peak on the right. This becomes more pronounced in higher
dimensions, or when comparing networks of different dimension.

This local area estimate of quality lets different local maximum a posterior estimates be

compared on an equal footing, for instance networks with different numbers of layers or con-

nections. This local area estimate and successively coarser approximations to it corresponds

to the various encoding measures such as MML [WF87] and MDL [Ris87], as discussed in
the next section. "

To make this estimate, we approximate the posterior at the local maximum @ by a
function of the form

where

P (to Iz, u)

, (1.8)

d 2 log Pr(w [z, ll) d _ log Pr(w, y [ffi)= =
dwdw dwdw '

_ d2Cost(w)
dwdw

Notice the differentials are dw rather than ato because the derivative represents the full

matrix of second derivatives w.r.t, the different weights tvn,m. Roughly, this approximation

is valid for large sample size N because the posterior is found by normalizing for to a formula

of the form g(w) N (see for instance [Ber85, p224]). The second derivative I(@) is taken of
the cos_ function, the log posteriors such as in Equation (1.4) or (1.5). Generally, the sample

size N should be at least some factor of the number of weights in the network.
When using a uniform prior, I(@) is referred to as the observed Fisher information ma-

trix and its determinant is referred to as the Fisher information. Both play a central part in

statistical theory [Ame85, Ber85]. In some simple non-network models, such as distributions

Buntine and Weigend 22

from the exponential family [Ber85], class probability trees and Bayesian networks on dis-

crete variables [Bung0], the posterior can be dealt with exactly so the approximation using

I(_) is not necessary. Because the constants in Equations (1.4) and (1.5) are independent

of w, they can be ignored when evaluating the derivative. The local posterior area for u_
near @ is found by integrating out w using the multivariate Gaussian approxin_tion, and

is given by

(2.)1-1/2
Pr(near _]ffi,y) _ Pr(_ i ffi, Y) det(i(_))l/s ,

where [w[is the dimensionality of the variable set w and det(-) is the matrix determinant.

The desired quality measure is now given by the negative logarithm of the local area

(and adding in the constant -log Pr(y I ffi))

Eval(_) = - logPr(,_a. _, _ i ®)

= - logPr(_ I_, ffi)- logPr(_) - --_ log(2.) + 2 logde t(I(_)), (1.7)

which wants to be minimized. Notice the first and second terms together give Cost(G). We

separate them out here because they correspond to the likelihood and prior components

respectively.

Notice also, that from the functional form of Equation (1.6), the matrix inverse of

I(_), I(_)-1 represents an approximate posterior variance-covariance matrix for w, [Ber85,
p224], and is at least approximately correct in the neighborhood of _. This means, for in-

stance, that the posterior variance of the weight Wn,m in the neighborhood of _, denoted

Vwlx,y,nea r _'(Wn,m), is given by the diagonal entry for w,_,m in the matrix I(_) -1. That is,

if Vwlx,y,nea r ;(w,_,m) is large, then the weight wn,m is poorly determined by the data and
perhaps should be ignored.

The determinant det(I(_)) could be approximated by looking only at the diagonals or

block diagonals (block corresponds to one node which is square in the number of weights

for the node). Individual second derivatives can be determined using a number of methods

[BWglb]. Fortunately, this only has to be done once for each local minima _ found, in-
stead of repeatedly during search, so a fast approximation is not essential. Fast packages

exist, such as the Fortran MATLIB, that can find determinants and inverses of matrices of

row/column size several hundred in a few minutes.

1.6.3 Minimum encoding methods

Quality measures similar to Eval(@) can be derived using various quantitization, encoding

and approximation methods. We discuss these briefly here to draw the strong connections

between Eval(@) and the often discussed encoding measures given in [WF87, BC91, tlis87].
We view these methods as potentially useful approximations but do not consider their

application here.

Rissanen's MDL

l_issanen develops his MDL measure [P_is87] as an upper bound on -log Pr(w, y i z). For

exposition purposes, we develop a related bound here. I(@) is a positive indefinite symmetric

Buntine and Weigend 23

matrix (since_ isa local maxima), sol

det/()_<\ / ,

where traceA is the sum of the diagonal entries in the matrix A. Now for large N,

traceI(_)/N is a mean so is approximately Gaussian, with mean O(Itol) and standard

deviation O(Iwl/v/'ff). Therefore with probability approaching 1 as N gets larger,

llogdetZ()= IogN+ O(I I)•

We get that

Eval(_) - - logPr(y [_, _) - logPr(_) -l-_- logN -4-O([w[).

This is an approximation developed by Schwarz and others [BCgl]. The corresponding MDL

form ignores the term log Pr(@) which is probably O(]w[) anyway and has an additional

term _ log [w[. In our case, O([w[) is quite large because we are dealing with networks with

many weights. It is not unusual in practice for the number of weights to be a similar order

of magnitude to sample size N, so ignoring terms of order O([w[), as this approximation
does, is probably unwise. We conclude this approximation is informative but perhaps too
crude.

Wallace eta/. and Barron et aL's measure

Wallace and Freeman [WF87] and Barton and Cover [BCgl] interpret a form like Eval(@) as
the cost of encoding y and @ given z. Wallace et al. refer to this as the minimum message

length (MML). Of course, y and @ can only be encoded to finite precision (in classification,

y is finite already). The precision of I/is implicit in the supplied data, so if the volume of

the precision for the data vector y is 6 then the cost of encoding I/given @ and z is

-- log Pr(lI I w, ffi) --log 6 .

Because I/is encoded given _, we must encode _ without knowledge of y. The second, third

and fourth terms of Equation (1.7) are not an appropriate code length, however, because
I(_) is dependent on _/.

The third and fourth terms of Equation (1.7) essentially correspond to the "precision"

of _ because if the continuous space for w is quantified then the cell in the neighborhood of

has prior probability given approximately by Pr(G)A.rea(_) where Area(G) is the area of

the cell, so - log Area(G) is the precision to which _ is specified. To interpret this precision

component, notice that if the weights to happened to be a pos_eriorindependent (an unlikely
event), then

1
.--_ log(2_r)-I-_ logdet(]'(_)) _, - _-'_ log (2.51"v/Vtplx,y,nea,_(to,_,m)) •

ZThe determinant is s product of eigenvalues, whereas the trace is s sum of eigenvalucm, which in this
case s_ all non-negative. The inequa_ty follows by maximizing Hi hl given a fixed value for _"_-ihl.

Buntine and Weigend 24

The recommended precision for encoding each weight is therefore approximately 2.5 times

the posterior standard deviation of the weight.

Wallace et al. and Barton eta/. make the fourth term in Equation (1.7) independent of

y using an involved quantification argument. We can interpret this by noting

1

lagdet(I()) = _ lagN+ 1 logdet (lI(_)) .

The term _I(@) is now in the form of an average since in general I(@) is a sum across the

N points in the sample plus a fixed prior term. We now replace this "average _ observed
Fisher information matrix by what is called the expected Fisher information matrix:

Coding(,, _) = - lag P,(_ i _, ®) - lag 6 - logP,(,_) - _ lag(_._) i_,i2

-b_-_ logN -b I Iogdet(I(_)) ,

where I(w) is the expected Fisher information matrix (the expected value of the observed

Fisher information for a single pattern) given by 2

7(w) (d21ogPr(z,_/[w))= E='YI" ' d_dtu '

(= E= Eylu,= . d_dw '

1 (d' log Pr(y , w, z,))
i=I,...,N

where (z, y) in these formula denotes a single pattern rather than the training sample (z, II).

Notice that this last formula is an estimate of _ I(@) involving knowledge of the sample
inputs z but not the sample outputs y. It is therefore a valid inclusion in the code-length
ofw.

1.7 Applications to network training

This section describes some applications of the tools just developed.

1.7.1 Weight variance and elimination

The Gaussian approximation to the likelihood near a local maximum a posterior also gives

a statistically sound method for pruning of networks [LDSg0]. The matrix inverse of I(_),
i(_)-x, represents an approximate posterior variance-covariance matrix for w, so we can

use this to test if a weight is significantly different from zero. Those that are not can be set
to zero.

2There is actually some slight of hand here. Wallace et _. and Ban-on et s/. develop their framework to

deal with likelihoods of the form p(ffilw) for data ffi and pewameters w whereas we are considering conditional

likelihoods auch as p(plw,=). Here we give our interpretation d their methods in this different context.

Buntine and We/lend 25

If we use the diagonal approximation to this matrix, then we get an estimate of the

posterior variance of the weight to,,m in the neighborhood of

. / alogp,-(toI [

Because _ is a local maximum for the posterior, the second derivative must be non-positive

so the variance estimate non-negative. A zero variance estimate means some other estimate
will have to be made. A large variance means the sample gave us little idea as to what

value the weight should be. So if the magnitude of a weight is within a standard deviation

(square root of the variance), the weight can be safely set to zero, which is similar to the

suggestion in [Ish90]. If the standard deviation of a weight is small, and the weight itself

w,_,,_ is smaller than the standard deviation, then the weight can be safely set to zero.

Alternatively, if the weight's standard deviation is large but the magnitude of the weight

larger, then the variance gives no support for zeroing the weight.

A more thorough test goes as follows. The quadratic term (w-_)T/(_)(w- _) appears
in the multivariate Gaussian approximation for the posterior for the weights w. For large

N, we therefore get that this quadratic term is approximately x-squared with Iw[degrees

of freedom. The X% confidence region (for instance, X - 99.0) for the weights w is the set

of weights within the upper X% point of the X_u,I distribution, Xlwl,x,2 giving

: (to- - < xi ,,l,x

For instance, the upper 99% point for 30 weights is given from standard x-squared tables

as 50.89. We therefore proceed as follows. We repeatedly set weights to zero while the

resultant weights remain in the X% confidence region. Notice this simple test can be done

directly from I(@) without having to first calculate a determinant or inverse, so might also

be done at stages during the back-propagation cycle.

1.7.2 Prediction and generalization error

Once search has located some local minima @ to the cost function, they can be used in

inference on new patterns. A naive approximation is to say that to must now be @ and to

make inference about y and _r2, etc., based entirely on this local minima @ using y = o(z', _),

etc. The reason this is naive is that in reality we cannot be sure that the _true" or _optimum"

to is @. For instance, with a sample twice the size we might change our estimate of to quite

dramatically. A full Bayesian approach says to take into account the many other values of

to near @ or even some other local minima because these other values just might happen

to be the _true" one. Only when we have a really large sample (for instance, when uniform

convergence bounds tell us the sample is large enough [Haugl]) can we be sure that @ is a

sufficiently good estimate so that no other need be considered.

In principle what we would like to calculate for a new pattern z' is Ewlx, y (o(z', to)) and

E_,,,ix, _ (_r2), etc. These values give us the posterior average of the quantities o(z', to) and _r2
that give better predictions for these quantities on average than those calculated for to : @.

The problem here is that we cannot calculate the posterior Pr(to [z, y) in reasonable time,

and only have the Gaussian approximation to the posterior described above.

This section describes how these predictions can be approximated using the posterior

approximations available. These approximations all make use of the second derivatives of

the cost function and the approximate weight variance discussed above. While it is hard to

Buntine and Weigend 26

predict how accurate these approximations will be in practice, their form at least gives some

idea of the interaction between weight variances and the behavior of the network output for
w in the vicinity of @.

Predictions are given for three quantities. The first is an approximation to E_[x,y (o(z', w)).
In classification this can be used to get an estimate of the posterior distribution for y given

z I, and can be used to predict generalization error, and in regression this gives an estimate

of the posterior mean of y. This can also be used to give generalization error for classifica-

tion. The second prediction is for Vwlx,y (o(z _, w)) which measures our uncertainty in the

first prediction. Notice as the sample size gets large this uncertainty will shrink to zero. We

give two versions of this uncertainty depending on which approximation to Ewlx,y (o(z _, w))

is used. The third prediction is for Ew,_,Ix,y (_2) which predicts generalization error for
regression with unknown standard deviation.

Predictions for a local minima

In what follows, we use the notation E ix,y,nea" _ (U(w)) to denote the expectation of the

quantity U(w) when averaged according to the approximate Gaussian posterior for w in the
vicinity of @. That is

Ew[x'Y'"ear_(_r(w)) - J_w U(w) det(I(_))] (-l (w _)Y I(@)(w--@)) dw(21r)lwl/2 exp -

We evaluate these integrals by using standard moments of the multivariate Gaussian [Ber85],

and approximating U(w) in the vicinity of _ using the second-order Taylor expansion which
in vector notation is as follows:

U(w) _ U(@) + (zo-@)T. dU(w)]
dw .,,=_

1 (t0-@)T d'U(w) -(w-_).
+'2 " dwdw ,.=_

Again, _ denotes a vector of first derivatives and the second derivative a matrix. This
gives

E.ix, y,... , _(U(w)) _ U(_) + _trace .I(_)-1" dwdw Iw=_) '

where, again, traceA denotes the sum of the diagonal entries of the matrix A. If any of the

approximate weight variances are large, then the approximation of E i_,y,neo , _- (U(w)) will

require accurate estimates of U(w) for w far from @. In this case the Taylor expansion will
be a poor approximation and our approximate predictions will be poor. Notice we could

also use the diagonal approximation for the matrices I(@) and the second derivatives of
U(w), however, the estimates may then become very poor and only be useful to indicate

where potential problems lie. These and other approximations are discussed in [Pre89].

Ewjx, y,,e..r _(o(z t, w)) : the posterior expected output of the network given input z', av-

eraged over weights in the vicinity of @. This is approximated by

o ,o,+1()_trace I(@) -1 dwdw w=_

Buntine and Wdgend 27

This modifies the output o(z', G) to account for how the output o(z t, to) varies in the

neighborhood of G, tempered by the posterior variance-covariance of to. In the case of

classification, this gives an estimate of out-of-sample accuracy for the network given
by

1 N

E a.,,,.." (o,,(z,,,1,))

1 (_. N1 "=No,,(zi,_) +_--/_trace Z(_) -1 dSE_N-:-!l%'(zi'to)dtodww=_/
(1.8)

E,nlx, y,ne. r _ ((o(z', to) - o(z', _))s) : when using o(z', ¢) to estimate o(z', to), the ex-

pocted variance of the output in the neighborhood of G, which gives a measure of

variance for our posterior uncertainty when using o(z', _) to estimate o(z', to). For
instance, in the regression case o(z I, _) corresponds to an estimate of the mean value

of y conditioned on z t. The variance is approximated by

to)[do(,', to)•
dto [.=G" dw .=G"

(1.9)

V [x,y,ne. r _ (O(X', to)) : the variance of the estimate Ewlx, y,ne. r _ (o(z', to)) in the neigh-
borhood of @. This is approximated by

do(z',to) T do(z',to)[_ 1trace (I(G)_x " dSo(z',to)

Notice this is lower than the previous variance estimate of Formula (1.9) due to the
second term which corrects for the fact that we are now using a better estimate for

to).

E.,¢[x,y,nea r _ (o "2) : the posterior expected value of o .2 in the regression case with Gaus-

sian error and unknown o.. This is sometimes termed the generalization error. This is

approximated using Equation (1.3) by

1 N1/V'- 1 _ (E'_lx'Y,ne"" ;(°(z"to))-Y')2"l - 1 _ V"lx,Y,ne'r ;(o(z,,to)) ,
i=l,...,N i=l,...,N

where the variances in the second sum were just given. This simplifies to

N N-- . d282--1 sSI'°=_"F"2(/_--T))trace(/(_)-I dwdwL=_) (1.10)

Notice the first term is the observed variance, and the second term increases this

because the estimate E ix,y,nea r _'(o(z_,to)) is only approximate and has a variance
of its own.

Buntine and Weigend 28

Multiple networks

If multiple local minima _ of similar quality have been found during restarts in the search

for weights, then the expected values above can be averaged over the different local minima

to produce a pooled estimate. This same _ultiple models" approach can produce sig-

nificant improvement in out-of-sample prediction when learning classification trees [Bung0].

It corresponds to a Monte Carlo estimation of the full posterior for w, rather than just an
approximation about _. Suppose a small set W of local minima are found, and for each

we have a proportion p(_ [_, y) to be used in the Monte Carlo estimation below, where

_-_e_ P(_ I z, V) = 1. For instance, these proportions could be constructed proportional

to Pr(near _, V] z), although equal proportions are sometimes used in Monte Carlo es-

timation. The estimate of the posterior for the weights w is now a weighted some of the
Gaussians in the neighborhood of each _:

P,(w I+,v) _ _ p(¢ I®,_)P,(w I+, V,nea" _),

where the Gaussian approximation described at the beginning of this section is used for each
Pr(w [_, V, near _).

This leads to the following corrections for the previous predictions. To find the expected

output of the network for different weights, we pool the expected outputs for the individual
local minima in W:

E,,,l,,,, (o(z', w)) +_ _ ,_I=,_)E,.l.,r,.,,,, , _.(o(z',w))

To find the variance of this value, we pool the variances for individual local minima together
with a measure of how much the output varies from minima to minima:

.,, (o(+',,,+,))_ _ p(¢ I+,+)"'.., ,.,,.,._"(o(+',+))I_'

+ v+,+,(,,,,.,,._
To estimate the standard error _r in regression with a Gaussian error model, we pool the
individual estimates of _r.

E,.,,.l.,y(o'") m _ _+I=,u)E ,.l..,+y,.+.._.(o-+) .
u, fiW

1.7.3 Adjustments for missing values

In many practical problems, training patterns are supplied with some values of variables

missing, unknown or undetermined. Of course if a pattern has its output value missing the

pattern can just be ignored. If an input variable has a value missing, however, we need

to deal with it. Approximate methods for dealing with this kind of problem exist when
learning tree classifiers [Qui89]:

• One can ignore the training pattern with missing values. Stochastic learning can

proceed initially using only the patterns without missing values.

Buntine and Weigend 29

• One can replace the missing value by some simple estimate such as the modal or mean

value. For instance, if the boolean input variable zl is either 0 (false) or 1 (true) and
if it is unknown, set it to be about 0.5.

• One can complete the pattern in various ways (to fill in missing values) and treat each

of these completions as a partial pattern (so the sum of fractional patterns adds to
i). We explain this ides in the context of feed-forward networks below. Tree learning

algorithms do this completion in an efficient demand driven manner (i.e. they complete

a missing value only when the value is asked for by the algorithm) that unfortunately
is not available with feed-forward networks.

The second approach works quite well and is the simplest to implement, however the third

approach gives the best performance in terms of out-of-sample prediction.
In this section we develop a modified algorithm for handling missing values related to the

third approach above. It also approximates the Bayesian normative approach for handling

missing values because we derive the approach here using standard laws of probability.

The method is another example of the use of mixture models [JJNH91] used for adaptive

mixtures of local experts, and the equations derived have a related form. We do the analysis
for the regression problem with Ganssian error and unknown standard deviation. The other

cases are similar. We assume we have a model of some kind denoted F that gives rough

prediction of the missing values from the known values. The model F might correspond to

simple linear models or some other form readily calculated from the data.

The training sample consists of input vectors zl,..., zN and corresponding output val-

ues Yl,... ,YN. But in this case some of the input vectors zi have missing values. Let
unknown(zi) denote the set of variables in the/-th input vector zi that have missing val-

ues. For instance, given the /-th boolean pattern zi = (I, 0, 7, 0, ?, ?) where ? denotes a
missing value, then unknown(zi) is the 3rd, 5th and 6th variables. Given an assignment to

these, z* E unknotun(zi), let ziz t denote one possible completion for the input vector zi.

Then the likelihood of the pattern is now given by

I=,, w,., F) = E=,e.nk.ow.(.,)l.,, r (l(y I.,.t, w,,.))

where the expectation is done using the model F for predicting the unknown values. We

can approximate this stochastically by selecting a few possible completions compl(zi) and
weighting them to give

Z(y, (1.11)
='E¢ompl(=_)

where the weights p(z I l zi, E) indicate likelihood of the different completions based on the

model F. This formula can now be evaluated because each likelihood l(y [ziz t, w, o,) can

be determined as in Section 1.5.1. For instance, in the example above, we may select 3

completions according to the model for predicting missing values as

cornld(zl) ----{ (1,0, O, 0,0,1), (1,0,0,0,1, 1), (1,0, 1,0, 1,0) }

and give them equal weighting of 1/3 each. Completions and weightings can be determined

once before the network training begins. Notice the crudest estimate is to use only the single

modal or mean value for the missing values with a weight of 1, as is often done.

Network training now consists of using these modified likelihoods. In the regression case

we are considering, the standard deviation can no longer be marginalized out so the cost

Buntine and Weigend 30

function is now -- log Pr(w, _r, ylF, z). Suppose the patterns in missing have missing values

and those in complete have all values given, then the cost is:

E __i_2(yil _o(z_,w))_+(N+l)logo. - log Pr(w) + constant
iEcomplete

- _ log _ _z'lz,,F)exp(-_-_2(y,-o(zix',w))" .
iEmiaJing x#Gcompl(xt)

While this looks more involved than the original cost function of Equation (1.4), its deriva-
tives are not that different.

0Cost(w)

_Wn jill

0 log Pr(w)

_lWn_lrn
2_ _ (_,- o(=,,w)) (1.12)

i E complete

1 E E w(,'l
iEmi*sing z'Ecompl(zl) OUIn'm

where the proportions w(zt[=i, F, _r) are calculated as

r,(=' I=,,F) _, (_ (y_- o(_,=',_))2)_(='1=,,F,_) ---
--1 •E.,_o..p,(.,)r_' I=,,F) exp(r_ (y,- o(=,_',_)?)

Compare the two sums in Equation (1.12). In the second, the term for the completion ziz'

appears weighted by the proportion w(z'lzi, F,_r) but in the term for the first sum each
(already complete) pattern zi is effectively weighted by 1. For this reason we say each

completion participates as a partial pattern. Notice, also that the proportions w(z'lzi , F, _)

essentially pick out that completion z' giving lowest squared error. Since the derivative of

o(ziz', w) w.r.t, the completion z' is available after the back-propagation step, we could

dynamically alter the completions z' during each learning step so their mean-square error
become lower.

The derivative of Cost w.r.t. _r is in a similar form but this time a fixed-point equation

(_r also occurs on the right-hand side) for _r can be derived:

_r -- I (_ (_]i--O(Xi,W))2 + E _-_ w(z' l =i,F,o').(yi -o(zi=',w)) _)./_ -_-1 iEc lete iEmieJingx'Ecompl(xt)

The standard deviation _r can be updated iteratively along with the weights w in each cycle.
Again we see the "partial patterns" alter the usual form for the variance. This is a common
result in mixture models.

A disadvantage of this method is that each pattern with missing values now produces

a number of completed patterns, each of which must be run through the network• For

instance, if every pattern has missing values and c different completions are used for each,

then computation is increased by a factor of c. One way around this would be to have the

network first learn for patterns with no missing values, and then to fine tune by including the

remaining patterns. Of course, the extra computation should give improved performance

Buntine and Weigend 31

as c isincreaseddue to the normative justificationof the approach. Also, the completed

patterns can be dynamically alteredduring trainingwith littleextra overhead, to produce

completions with lower mean-square error.

1.8 Conclusion

This paper has covered Bayesian theory relevantto the problem of trainingfeed-forward

connectionistnetworks. We now sketch out how thismight be put together in practice,

assuming a standard gradientdescentalgorithm as used during search.

For network training,the principlestepsare as follows:

i. Choose an appropriate network structure and size based on prior knowledge about the

application (see for instance the discussion in [LeC89] regarding choice of network),

and select a prior on the weights. Notice a small number of different structures could
be selected and the method will the best select the best.

. Construct completionsand theirproportionsp(zt]z_,F) foreach trainingpatternwith

missing values.Ifstochastictrainingisused rather than epoch training,each set of

completionsshouldalways be run through the network togethersothat the appropriate

term in Equation (1.12)can be calculated.

. Train toa localminima @ asper usualbut incorporatingthe adjustments describedfor

missing valuesin Section1.7.3.Appropriate costfunctionsare given in Section 1.6.1.

In principle,the weight variances,weights evaluationand predictionsonly apply if

found isa true localminima to the cost functionso epoch trainingmight have to be

used in the lastfew cyclesto ensure this.

4. Possibly,use the weight eliminationstrategyof Section1.7.1toforcesome weights to

zero,and continue trainingthe network with forcedweightsremaining at zero.

. Once a localminima isfound, estimate the qualityof the localminima by finding

second derivativesfor every trainingpattern and combining them in the Evaluation

measure of Section1.6.2.Calculationofsecond derivativesisdescribedin [BW91b].

. Do random restartsof the network to repeat the lastthreestepsand findother local

mininm. The estimated weight variancesVwlx,y,,,e,rg-(w,,,,n)or I(_) and the evalua-

tion measure Eval(_) should be retained foreach low cost localminima _ saved. If

severaldifferentnetwork structuresare being tried,then repeat the lastthree steps
for these as well.

. Choose a few networks with the best evaluation(Eval(@)).Noticethat the networks

or localminima should not be chosen on the basisof theirgeneralizationerror (as

given in Section 1.7.2)because the generalizationerrorfora particularlocalminima

isestimated based on the assumption that the network structureis%orrect_ and

the "true_ weightsare in factquitenear @.

. Estimate the generalizationerror (forout-of-sample prediction)using the Formu-

las (1.8)or (1.10),possibly combined using the pooled versionsat the end of Sec-

tion 1.7.2.Now that a high posteriorstructureand set of weights has been chosen,

the assumptions behind the formula are reasonable.

Buntine and Weigend 32

Once some local minima have been found, inference can be done on new patterns. Rele-

vant approximate predictions are described in Section 1.7.2 that apply if the weight variances

are small. Standard inference does forward propagation of the inputs for the new pattern
to obtain the output. The adjustments described involve approximation of output posterior

variance of the output (error bars), better approximation of expected output and variance,

and averaging over multiple local minima.

These adjustments to the standard back-propagation procedure increase computation

during back-propagation in most cases by at most a factor. Subsequent inference such as

calculating variances require matrix calculations that can be done using fast standard matrix

packages. While these methods come with the normative backing of Bayesian statistics,
implementation often reveals lessons on how the various approximations and optimizations

could be better made. One important issue here is the quality of the Gaussian approximation

to the posterior of the weights. Since the whole approach rests on this, more evaluation and
experience is required. A smooth transition also needs to be developed between Bayesian

and uniform convergence methods to handle those cases where training samples become

larger.

Acknowledgements

One of us (ASW) would like to thank David Rumelhart for many fruitful discussions. The

other (WLB) would like to thank Robin Hanson likewise.

Chapter 2

Calculating Second Derivatives
on Feed-Forward Networks

Recent techniques for training connectionist feed-forward networks require the calcula-

tion of second derivatives to calculate error bars for weights and network outputs, and

to eliminate weights, etc. This note describes some exact algorithms for calculating

second derivatives. They require at the worst case approximately 2K back/forward-

propagation cycles where K is the number of nodes in the network. For networks with
two-hidden layers or less, computation can be much quicker. Three previous approxi-

mations, ignoring some components of the second derivative, numerical diIYerentiation,

and scoring, are also reviewed and compared.

2.1 Introduction

Recent improvements to back-propagation methods for training neural networks have con-

sidered several tasks: speeding up learning using more sophisticated gradient descent al-

gorithms [BL88, E:IMg0]; eliminating insignificant weights in order to find networks of an

optimal size [LDSg0]; the placing of error bars on the weights (to determine which weights

are poorly estimated from the data and are perhaps suitable for elimination) and on the

network outputs [DL91, Macgl]; and comparing the _posterior" quality of weights in dif-
ferent networks trained on the same data [BW91a, Mac91], the MDL principle and related

encoding techniques are generally considered to be approximations of these [BB88, BWgla].

These techniques share one requirement in common: they all require calculation of sec-
ond derivatives of the energy function or network output w.r.t, the network weights. The

first derivatives are of course calculated during standard back-propagation. Le Cun et al.

have suggested an approximate calculation that ignores certain terms [LDSg0] and MacKay,
sometimes finding this too inaccurate, used a more costly but accurate method of numeri-

cal differentiation [LDSg0, Macgl]. Second derivatives are used by MacKay and their use

is suggested by Buntine and Weigend [BW91a] because they have a relationship with im-

portant quantities such as the posterior variance of the network weights, i.e. "error bars",

and the description length of a set of weights used in evaluating the quality of the set of

33

Buntine and Weigend 34

weights. Because these quantities are only required at the end of network training, rather

than during each training cycle, their calculation does not have to be very efficient. Also,

some of the above methods require the complete set of second derivatives, some require only

the diagonal entries, and some approximations use block diagonals or other subsets of the
full set.

2.2 Notation

The networks we consider consist of a directed acyclic graph, giving the network structure,

together with the activation functions at each node. A (directed) connection from node n

to m represents that node m receives node n's activation during the inference stage, often

multiplied with a weight wm,n. Let K denote the number of nodes in the network. Let the

set ,4 denote the set of node pairs corresponding to a connection, so (n, m) E .A denotes
that there is a connection from nodes n to m. Let .A* be such that (n, m) E .4" if and only

if there is some sequence of connections in .4 from n to m. The sequence may be null so

that (n, n) E .4* by default. This is referred to as the transitive closure of .A. For instance,
if the network is layered and fully connected between layers, then (n, m) E .A* will hold
whenever n is in a lower numbered layer than rn or n is equal to m. The activation of any

node n E .&f is denoted un which is a real number. The activation function for the node

rn is a function of the activations un for nodes n inputting to node m, and the function is

parameterized by a vector of parameters w,,. The activation function for a node n can take

the following forms (for some functions _bn,k and f,,)

u, = fn(vn, w,,0) where vn -- _ _b,,,k(uk, w,,k) (quasi-linear input),

un = f.(v.) where vn --'- wn,0-_ Y_ ukte,,tt (linear input).
('..n)_.,t

The linear input form corresponds to the standard linear or sigmoid activation functions

and the quasi-linear input form corresponds to radial basis nodes which in general take a

weighted sum of squared differences between inputs and some "mean". One exception to

these forms is Softmax [Bri89]. The normalizing effect of Softmax nodes is readily absorbed

into the energy or cost function for training, so these nodes are not necessary in the network.
Second derivatives are to be calculated of the cost function or energy function summed

across all training patterns. Some standard cost functions are mean-square error or cross-
entropy. So we are interested in the sum of terms for each training pattern of the form

a2E

Ow,,,,_ t_w,, d

where E is the cost function or energy function for a single pattern, which itself is a function

of the network outputs for the pattern.

2.3 Exact calculations

This section presents an exact algorithm for calculating second derivatives of the energy

or cost for a single pattern. Basic derivatives can be calculated as follows. This assumes

nothing about the form of the activation functions (and follows directly from the chain rule).

Buntine and Weigend 35

Lemma 2.3.1 Assume a neural network framework as set up previously wflh the network

a directed acyclic graph. Consider second derivatives of E which can be any .function of

activations from the output nodes. Equation (2.1) assumes that node n is not an output

node. Equation (_._) assumes there is no sequence of connections from m to n (i.e. u, is

not a partial function of urn).

82E = _-, 82E 8ul + _, 8E 82ua (2.1)
8u.au. i-. au.au, au. i_. auaau.au. '

(nJ)eA (.J)¢A

82E 82E 8.. 8u. 8E 8Zu.
-- + ira=.

8w,.,_Sw.,_ cOu,.au. 8Wm,_ 8w.j au_ aw,.,iSw,.,_

8E Sun _ 82urn But , (2.2)+
8urn 8w.,i _ 8wm,iSua au.

(i,,.)¢.a

where the indicator function 1,,=, tares the value I if m = n and 0 otherwise.

Notice the final summation is only present if there is a sequence of connections from node
n to node m.

Corollary 2.3.1 Assume that]or every node activation input is quasi-linear. Consider

how the above second derivatives evaluate. Equation (_.$) assumes there is no sequence of

connections from m_o n.

82E = IL.. 8u_ 8u. 8E aura 82vm 8u_ au. (2.3)
8w,.,_Sw.j ' 8w.-'--_,_8w.j + li_°'8"_ Be,. 8u_awm,_ 8u. 8w.j

-F
aw.,, av_./_,a..; / aw.,, aw.a

(o,o. ion./ o.. o,.. o.. o.. o..
+ l"*"l'=°aT_ kav'aw'" _ / 8w.,,, 8v_ / \ 8v,.) / 8u. aw.,, 8w. a

where lij(i-j)=0 denotes i or j is zero or i =], and

8ul 8ul ¢92E 8ul 8ut (2.4)
R.,. = E G'OT. Ou. + E ou, Ou, au..au.'

(n,I),(m,i)EA* I,kEoetput-node,

oEa u. / (ou. oEou,o,v, (2.5)
G. = oT_ _ / _,av.; + _ 8u,or, ou_ '

(,.J)¢.J.

and when n is not an output node

8u_ 8us

R_,,, = G,,-_u " + E P,_,,,_--_ • (2.6)
(-J)¢A

Proof First, when there is no sequence of connections from m to n, from Equation (2.1)

we can prove by induction that

82E _ 8um X"" 8E 8u_ 82vl _ 8uz _u_
+ GI_u.au. _u. z.. ou,or, au_ z.., au. au.

(,.J)eA (.J),(mJ)eA+

8_ E 8u_ 8u_
+

Z. 8u_Ou_ cOu. 8u.
i,kEo_tput-_odea

Bunt/he and Weigend 36

If we now define

_ o2F, oF, 2 o,.. (2.7)_'" - o.,.o-_-_-+ _,. o._ kay. / o.. '

we have proven Equation (2.6) for when there is no sequence of connections from m to

n. Substituting in the definition of R.m,, into Equation (2.3), and cancelling out terms

almost gives us Equation (2.2). Equivalence of Equations (2.3) and (2.2) is shown by first

substituting into Equation (2.2)

o2u. ou, = E o o,.Ow.,,oua Ou,, O.,.,, \ Or. Ou,) Ou,,
(Lm)e.4 (I,m)¢.4

o2u,. Or,. Ou,. 0%,. cgu_

= Ow,.,,Ov. Ou. + Or. c%o.,,Ou, Ou. "

Substituting in the value of R_,, into Equation (2.3), noting that the indicators lij(,-j)=0
and li=o are unnecessary in the last two terms, and rearranging proves equivalence. Also,

we also get Equation (2.4) by induction from Equation (2.6). Notice Equation (2.4) is

symmetric in n and m so we can drop the conditions on n and ra for this equation. A final
induction proof then shows Equation (2.6) for when there is a sequence of connections from

m to n. E3

Notice that if nodes use activation functions with linear input such as a sigmoid, then

the corollary simplifies further because _ = 0, _ = 1 if (m, l) E .A, etc.
0 _tl m OU mOW! ,m

Corollary 2.3.2 Assume that for every node activation input is linear. Then the formula

in Corollary _,.3.I evaluate to, rahere Equation (2.8) assumes there is no sequence of con-

nections from m to n:

OF.02, . / ("G., = O_,., a,_L k_,/ '

o2E #urn 8,_. OF., 8u,. 8u, 8",. (2.8)
OWmjOW.O - Rm,. Ow,.# Ow.O + 1,#0 0u,. Or.. 0u. 0t0.O

For most energy functions, the second summation in Equation (2.4) is easy to compute

sinceusually _E : 0 fori _ j. For instance,formean-square erroron multipleoutputs,
we get

1 Oui Ou!

r" E Ow,.j Ow.j + constant.
IEinput-nodea

To calculate second derivatives using any of the above equations, all first derivatives

between nodes have to be computed, that is, we need o__ for all (m, l) E ,4*. This applies
even if we are only interested in the diagonal terms of-tJae second derivative. Notice that

for networks with two or less hidden layers, all these first derivatives will be available once

all first derivatives of output nodes are computed. First derivatives oe for a fixed I can

be calculated by backward propagation of derivatives from I. Derivatives au for a fixed m

can be calculated by forward propagation of derivatives from I.

Buntineand Welgend 37

Also, notice that if node m is an output node, then I in the summation in Equation (2.4)

can only be rn so R,nm can be computed in constant time, assuming the required first

derivatives exist. Second derivatives are therefore only expensive to calculate exactly if

both weights are in hidden nodes. Similarly, second derivatives are quite efficient to calculate

exactly if one of the weights is at most one or two node away from an output node.

We therefore get the following algorithm for exact computation of second derivatives:

I. CalculateG,_ foreach node m. (Thistakesinthe orderofone back-propagationcycle

todo.)

2. For each node n calculateRm,,_ forrelevantnodes m:

(a)Forward propagate from n to calculatederivatives_ for each node m using
Bum

the standard formula

au,_ aua aUm
= Out

(mJ)e.4

(b) Ifwe axe only interestedin Rm,n for n = m, then compute R,_,m using Equa-

tion(2.4).

(c) Else,backward propagate startingfrom the output nodes to calculateR,_,n for

each node m using Equation (2.6)for the recursivecase and Equation (2.4)for
the base case.

This requiresat the worst case approximately 2K back/forward-propagation cycles.Any
requiredsecond derivativecan now be read from the storedcalculationsin constant time.

Notice that for the special case where we are only after the block diagonals °_E
Ow,_,iOw,,,j

for n --m, of a network with at most two hidden layers,then calculationof P_,, for every

node n takesonly (approximately) threeback-propagationcyclessincefirstderivativescan

be calculatedwith one back-propagation cycle,and each P_,n can be calculateddirectly

from Equation (2.4).

2.4 Approximations

Ifwe assume nodes m and n are at the same level,then from Equation (2.1)we get

Le Cun et al.'s approximation corresponds to the case where we have linear input nodes and

we assume _ = Rz,k = 0 for nodes l _ k with I and k at the same level, giving the rule
(they use a different parameterization so their form is different):

(,nJ)e.4

_ (o E OEawL, \ \ / + "

Buntine and Weigend 38

02Ed
OWm,iOWm,_

d=l,...,D

These can be computed with one back-propagation cycle so calculation is efficient [LDS90].

MacKay, however, found the method inaccurate for his purposes [Macgl] and instead

dropped the first summation from Equation (2.4) and all hut the first term from Equa-

tion (2.3) leaving a calculation that requires only the first derivatives,

a2 E 02 E Out au_

awmjaw.j _ _ aulau_ awm,i Ownj
I,k E output-nodeJ

He reports this is inaccurate when approximating the determinant of the matrix of second

derivatives, or looking at individual second derivatives, but seems fine when approximating

the trace of the matrix. This approximation, ignoring the second derivatives, corresponds

to the Levenberg-Marquardt approximation in non-linear least squares [PFTV88, p523].

Clearly, better approximations involving a few more terms are available.

A second form of approximation exists if the network cost function being minimized

corresponds to the negative logarithm of the likelihood of the training sample, as is often the

case when using mean-square error or cross-entropy cost functions [BW91a, BW87, EJM90].

Suppose the likelihood of the training sample of size D is given as a product over patterns

(za, Yd) in the sample

_gl _,w) = II z(y, I :,,,,,),
d=l,...,D

where l(gi I zi, w) is the likelihood of the d-th pattern and is a function of the network output

for input z_ and the "correct" output 9i. Then maximum likelihood training (maximum a

posterior training is similar) corresponds to minimizing the energy function with component

for each pattern

Z;d = --logt(y,_I x,, w).

For instance,when using the mean-square error costfunction on a singleoutput, we are

implicitlyusing the Ganssian likelihood

-_-_ (Yd- od)2l(y,_ I z,, xo) = _ exp

where a is the standard deviation and od is the network output for input rod.

When network weights are near a local maxima of the likelihood the second derivatives

can be approximated using the following formula:

0 2 - logp(17]_,w)

OWm,iOWm,.#

aEd OEd (2.9)
= _ Owm,i Owm,j

d=l,...,D

Noticethisonly requirescalculationofthefirstderivativesofthe energy.The approximation

step isjustifiedbecause at a local maxima, on the assumption that the weights w are

Buntine and Weigend 39

approximately correct (which they may well not be) and the sample size D is large [Ame85,
p.14], the two sides are approximately equal. This is the approximation used in the "scoring"

method of maximum likelihood training [AmeSS]. This approximation is best used during
search when fast estimates of second derivates are required. The approximation would be

misleading when after good approximations for error bars because it assumes that the thing

we are attempting to evaluate is approximately true (that the weights are correct).
A third more exact approximation of second derivatives can be done by numerical dif-

ferentiation of the first derivatives, which in turn can be calculated using standard back-

propagation. This corresponds to

02 E(w) 1
Ow,,_,_Ow.j _" Awm,i

(oF.(,,, + zx,,,,.,,) oE(w)']

If there are [w] different weights in the network, then this requires }w[+ 1 back-propagation

cycles to compute the necessary first derivatives (compared to 2K back/forward-propagation

cycles for the exact calculation, where K is the number of nodes). This method has been

used in the case where there is a small number of weights by MacKay [Mac91].
A more efficient approach is to use numerical differentiation to calculate second deriva-

tives of the activations, o'E in K+I back-propagation cycles, and to calculate additional

first derivatives -_. as required in approximately _ back-propagation cycles, and then use

Equations (2.3) an"_i (2.7). A similar method is su'ggested in [BL88]. This approximation

is therefore of the same computational order as the exact calculations described previously,

but requires little additional algorithm overhead other than the back-propagation algorithm.

Acknowledgements

Thanks to Sue Becker, Yann Le Cunn and David MacKay for useful feedback.

Bibliography

lame85]

[BB88]

[BC91]

[Ber85]

[BH89]

[BL88]

[Bri89]

[BunO0]

[Bun91]

[BW87]

[BW91a]

[BW91b]

T. Amemiya. Adraneed Econometrics. Harvard University Press, Cambridge,
MA, 1985.

A.IL Barton and B..G. Barron. Statistical learning networks: A unifying view.

In 1988 Symposium on the Interface: Statistics and Computin 9 Science, Reston,

Viginia, 1988.

A.IL Barron and T.M. Cover. Minimum complexity density estimation. IEEE
2_rens. on IT, ??, 1991.

J. O. Berger. Statistical Decision Theory and Bayesian A nalosis. Springer-Verlag,
New York, 1985.

Eric B. Baum and David Hauss]er. What size net gives valid generalization?

Neural Gomp_tation, 1:151-160, 1989.

S. Becker and Y. Le Cun. Improving the convergence of back-propagation learn-

ing with second order methods. In David S. Touretzky, Geoffrey E. Hinton, and

Terrence J. Sejnowski, editors, Proceedings of the 1988 Gonneetionist Models

Sttmmer School, pages 29-37. Morgan Kanfmann, 1988.

J.S. Bridle. Probabilistic interpretation of feedforward classification network

outputs, with relationships to statistical pattern recognition. In F. Fougelman-
Soulie and J. H_rault, editors, Neuro-comp_tino: Algorithms, Architectures and

Applications. Springer-Verlag, 1989.

W.L. Buntine. Learning classification trees. Technical Report FIA-90-12-19-01,

RIACS and NASA Ames Research Center, Moffett Field, CA, 1990. Paper pre-

sented at Third International Workshop on Artificial Intelligence and Statistics.

W.L. Buntine. A Theor9 of l, earnin9 Cl¢ssifieation R_les. PhD thesis, University
of Technology, Sydney, 1991.

E.B. Baum and F. Wilczek. Supervised learning of probability distributions

by neural networks. In D.Z. Anderson, editor, Neural Information Processin9

Sostems (NIPS), pages 52-61, 1987.

W.L. Buntine and A.S. Weigend. Bayesian back-propagation. Submitted, 1991.

W.L. Buntine and A.S. Weigend. Calculating second derivatives on feed-forward
networks. Submitted, 1991.

4O

Buntine and Weigend 41

[Cot90]

[DL91]

[EJM90]

[Go188]

[Goo83]

[Hau91]

[HHL86]

[HP90]

[HT90]

[hhgO]

pJNH91]

[LDS90]

[L C8

[LeC89]

N.E. Cotter. The Stone-Weierstrass theorem and its application to neural net-

works. IEEE Tcans. on Neural Network, 1(4):290-295, 1990.

John S. Denker and Yann Le Cun. Transforming neural-net output levels to

probability distributions. In ll.P. Lippmann, J.E. Moody, and D.S. Touretzky,
editors, Advances in Neural Information Processing Systems 3, page 853. Morgan

Kaufmann, 1991.

A. E1-Jaroudi and J. Makhoul. A new error criterion for posterior probability

estimation with neural nets. In Int. Joint Conf. on Neural Networks, pages

III-185-192, San Diego, CA, 1990.

ll.M. Golden. A unified framework for connectionist systems. Biological Cyber-

netics, 59:109-120, 1988.

I.J. Good. The Goodbook. University of Minnesota Press, Minnesota, 1983.

D. Haussler. A decision theoretic generalization of the PAC learning model and
its application to some feed-forward neural networks. Information and Control,

1991. To appear.

E.J. Horvitz, D.E. Heckerman, and C.P. Langlotz. A framework for comparing

alternative formalisms for plausible reasoning. In Fi.P,h National Conference on

Artificial Intelligence, pages 210-214, Philadelphia, 1986.

J.B. Hampshire II and B.A. Pearlmutter. Equivalence proofs for multi-layer

perceptron classifiers and the Bayesian discrimination function. In David S.
Touretzky, Jeffrey L. Elman, Terrence J. Sejnowski, and Geoffrey E. Hinton,

editors, Proceedings of the 1990 Connectionist Models Summer School. Morgan

Kaufmana, 1990.

T.J. Hastie and ll.J. Tibshirani. Generalised Additive Models. Chapman and

Hall, London, 1990.

M. Ishikawa. A structural learning algorithm with forgetting of link weights.

Technical Report Tll-90-?, Electrotechnical Laboratory, Life Electronics lie-

search Center, Tokyo, 1990. Modified version of a paper presented at IJCNN,

Washington D.C. 1989.

ll.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of

local experts. Neural Computation, 3(1), 1991.

Yann Le Cun, John S. Denker, and Sara A. SoUa. Optimal brain damage. In

David S.Touretzky, editor, Advances in Neural Information Processing Systems

(NIPS*89), page 589. Morgan Kanfmann, 1990.

Y. Le Cun. A theoretical framework for back-propagation. In David S. Touretzky,

Geoffrey E. Hinton, and Terrence J. Sejnowski, editors, Proceedings of the 1988

Connectionist Models Summer School, pages 21-28. Morgan Kaufmann, 1988.

Y. Le Cun. Generalization and network design strategies. Technical Report

CllG-Tll-89-4, Dept. of Computer Science, University of Toronto, Toronto, M5S

1A4, Canada, 1989.

Buntine and Weigend 42

[LTS89]

[Mac91]

[MN89]

[0R91]

[Pan89]

[Pea88]

[PFTV88]

[Pre89]

[Qui86]

[Qui89]

[RAW86]

[Ris87]

[SSTgl]

[TSN90]

[Vap82]

[WF87]

E. Levi, N. Tishby, and S.A. SoUa. A statistical approach to learning and general-
ization in layered neural networks. In R. Pdvest, D. Haussler, and M.K. Warmuth,

editors, COLT'Sg: Second Workshop on Computational Zearning Theory, pages

245-260, University of California, Santa Cruz, 1989. Morgan Kaufmann.

D.J.C. Mackay. A practical Bayesian framework for backprop networks. Submit-
ted to Neural Computation, 1991.

P. McCullagh and J.A. Nelder. Generalised Linear Models. Chapman and Hall,
London, second edition, 1989.

M. Opper and D. Hanssler. Generalised performance of Bayes optimal classi-

fication algorithm for learning a perceptron. In COLT'91:1991 Workshop on

Computational Learning Theory. Morgan Kaufmann, 1991. Manuscript.

Panel Discriminant analysis and clustering. Statistical Science, 4(i) :34-69, 1989.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan and Kanffman,
1988.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press,

Cambridge, 1988.

S.J. Press. Bayesian Statistics. Wiley, New York, 1989.

J.IL Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

J.tL Quinlan. Unknown attribute values in induction. In Proceedings of the Sizth
International Machine Learning Workshop, CorneL1, New York, 1989. Morgan
Kaufmann.

David E. Rumeihart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

internal representations by error propagation. In David E. Rumelhart, James L.

McClelland, and the PDP Research Group, editors, Parallel Distributed Process-
ing, page 318. MIT Press, 1986.

J. Rissanen. Stochastic complexity. J. Roy. Statist. Soc. B, 49(3):223-239, 1987.

H.S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning

from examples; i. general formulation and annealing approximation. Manuscript,
1991.

G.G. Towell, J.W. Shavlik, and M.O. Noordewier. Refinement of approximate

domain theories by knowledge-based neural networks. In Eighth National Con-

ference on Artificial Intelligence, pages 861-866, Boston, Massachusetts, 1990.

V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-
Verlag, New York, 1982.

C.S. Wallace and P.tL Freeman. Estimation and inference by compact encoding.

J. Roy. Statist. Soc. B, 49(3):240-265, 1987.

Buntine and Weigend 43

[WHR90]

[WRH91]

[Zel90]

Andreas S. Weigend, Bernardo A. Huberman, and David E. Rumelhart. Pre-

dicting the future: a connectionist approach. International Journal of Neural

Systems, 1:193-209, 1990.

Andreas S. Weigend, David E. Rumelhart, and Bernardo A. Huberman. Gen-

eralization by weight-elimination with application to forecasting. In Richard P.
Lippmann, John Moody, and David S. Touretzky, editors, Adraneea in Neural

Information Processing Systems 3 (NIPS*90). Morgan Kaufmann, 1991.

A. Zellner. Bayesian methods and entropy in economics and econometrics. In

W.T. Grandy, Jr. and L. Schlick, editors, Mazimum Entropy and Bayesian Meth-

ods. Kluwer, 1990.

